Maryland Inventory of Historic Properties number: Pa-2780 Name: 4100 Sulphun Spungo Rel Maryland Historical Trust The bridge referenced herein was inventoried by the Maryland State Highway Administration as part of the Historic Bridge Inventory, and SHA provided the Trust with eligibility determinations in February 2001. The Trust accepted the Historic Bridge Inventory on April 3, 2001. The bridge received the following determination of eligibility. | MARYLAND HISTORICAL TRUST Eligibility Recommended Eligibility Not RecommendedX | | | | | | | | | | |---|-------------------|-----|----|-----|-----|-------|-------|----|-------| | Criteria:ABC _ | D Considerations: | A . | B_ | c _ | D _ | E_ | F_ | G_ | _None | | Comments: | | - | | | | | | | | | Reviewer, OPS:_Anne E. Bruder_ | | | | Dat | e:3 | April | 2001_ | | | | Reviewer, NR Program:Peter E | Kurtze | | | Dat | e:3 | April | 2001_ | | | MARYLAND INVENTORY OF HISTORIC BRIDGES HISTORIC BRIDGE INVENTORY MARYLAND STATE HIGHWAY ADMINISTRATION/MARYLAND HISTORICAL TRUST MHT No. <u>BA-2780</u> | SHA Bridge No. 3005 Bridge name US 1 over Sulphur Springs Road | | | | | | |--|--|--|--|--|--| | LOCATION: Street/Road name and number [facility carried] US 1 (Southwestern Boulevard) | | | | | | | City/town Halethorpe Vicinity X | | | | | | | County Baltimore | | | | | | | This bridge projects over: Road X Railway Water Land | | | | | | | Ownership: State X County Municipal Other | | | | | | | HISTORIC STATUS: Is the bridge located within a designated historic district? Yes NoX | | | | | | | Name of district | | | | | | | BRIDGE TYPE: Timber Bridge: Beam Bridge: Truss -Covered Trestle Timber-And-Concrete | | | | | | | Metal Truss Bridge | | | | | | | Movable Bridge: Swing Bascule Single Leaf Bascule Multiple Leaf Vertical Lift Retractile Pontoon | | | | | | | Metal Girder X : Rolled Girder X : Plate Girder Plate Girder Concrete Encased Encase Plate Girder Concrete Encase Plate Plate Girder Concrete Encase Plate Pl | | | | | | | Metal Suspension | | | | | | | Metal Arch | | | | | | | Metal Cantilever | | | | | | | Concrete: Concrete Arch Concrete Slab Concrete Beam Rigid Frame Other Type Name | | | | | | | DESCRIPTION: Setting: Urban X Small town Rural | | |---|--| | Describe Setting: | | | Bridge No. 3005 carries US 1 (Southwestern Boulevard) over Sulphur Springs Road County. US 1 runs north-south and Sulphur Springs Road runs east-west. The bridge the vicinity of Halethorpe, and is surrounded by commercial development. | l in Baltimore
ge is located in | | Describe Superstructure and Substructure: | | | Bridge No. 3005 is a 1-span, 2-lane, metal girder bridge. The bridge was originally but the parapets were replaced in 1978. The structure is 69 feet long and has a clear roa 44 feet; there are two (2) sidewalks measuring 5 feet wide. The out-to-out width is superstructure consists of fourteen (14) rolled girders which support a concrete deconcrete parapets with a pedestrian barrier. The girders are 11 inches x 37 inches a approximately 6 feet apart. The roadway is carried on the girders. The concrete deconcrete, and it has a bituminous wearing surface. The structure has modern concrete, and bridge. The substructure consists of two (2) concrete abutments. There are four concrete wing walls, and the bridge has a sufficiency rating of 78.5. | dway width of 54 feet. The k and modern are spaced ck is 10 inches crete parapets level with the | | According to the 1996 inspection report, this structure is in fair condition with minor cracking, spalling, and scour. The asphalt wearing surface has several patches and irregular cracking in the abutments and wing wall abutment has a large spall at the top with exposed reinforcing bars. The I-beams all paint and areas of moderate rust. Beams 7 and 8 have heavy rust, scale, and pitti bearings have heavy rust with some scale, pitting, and section loss. The concrete para condition, but has fine vertical cracking. | gular cracking.
s. The south
l have peeling
ng. The fixed | | Discuss Major Alterations: | | | Reconstruction plans of the bridge from 1978 indicate that the bridge originally has parapets, which were removed and replaced with modern concrete parapets with a ped in 1978. | | | HISTORY: | | | WHEN was the bridge built: 1947 This date is: Actual X Estimated Source of date: Plaque Design plans County Bridge Files/Inspection form Other (specify): State Highway Administration bridge files/inspection form | ction form | | WHY was the bridge built? | | WHO was the designer? increased load capacity. State Roads Commission The bridge was constructed in response to the need for more efficient transportation network and | WHO | \mathbf{C} | was | the | bui | Ы | er? | |-----|--------------|--|------|-----|---|-----| | *** | • | ************************************** | LIIL | vu. | u | ~ | Unknown WHY was the bridge altered? The bridge was altered to correct functional or structural deficiencies. Was this bridge built as part of an organized bridge-building campaign? There is no evidence that the bridge was built as part of an organized bridge building campaign. ## **SURVEYOR/HISTORIAN ANALYSIS:** | This bridge may hav | e National Register significance | for its association with: | |---------------------|----------------------------------|---------------------------| | A - Events _ | B- Person | <u> </u> | | C- Engineeri | ng/architectural character | | The bridge does not have National Register significance. Was the bridge constructed in response to significant events in Maryland or local history? Metal girder bridges were most likely introduced and first popularized in Maryland by the state's major railroads of the nineteenth century including the Baltimore and Susquehanna, its successor the Northern Central, and the Baltimore and Ohio Railroad. Bridge engineering historians have documented the fact that James Milholland (or Mulholland) erected the earliest plate girder span in the United States on the Baltimore and Susquehanna Railroad in 1846 at Bolton Station, near present-day Mount Royal Station. The sides (web) and bottom flange of Milholland's 54-foot-long span were wholly of wrought iron and included a top flange reinforced with a 12x12-inch timber. Plates employed in the bridge were 6 feet deep and 38 inches wide, giving the entire bridge a total weight of some 14 tons. Milholland's pioneering plate girder cost \$2,200 (Tyrrell 1911:195). By December 31, 1861, the Northern Central Railroad, which succeeded the Baltimore and Susquehanna, maintained an operating inventory in Maryland of 50 or more bridges described simply as "girder" spans, in addition to a number of Howe trusses. Most of these were probably iron girder bridges; the longest were the 117-foot double-span bridge over Jones Falls and the 106-foot double-span girder bridge at Pierce's Mill (Gunnarson 1990:179-180). As in the nation, girder bridge technology in Maryland was quickly adapted to cope with the increasingly heavy traffic demands of the twentieth century caused by automobile and truck traffic. The 1899 Maryland Geological Survey report on highways noted that "there are comparatively few I-beam bridges, one of the cheapest and best forms for spans less than 25 or 30 feet" (Johnson 1899:206). Interestingly, the report also urged construction of a composite metal, brick, and concrete bridge, noting that "no method of construction is more durable than the combination of masonry and I-beams, between which are transverse arches of brick, the whole covered with concrete, over which is laid the roadway" (Johnson 1899:206). Whether any such bridges (transitional structures between I-beams and reinforced concrete spans) were built is unknown. Official state and county highway reports—issued between 1900 and the early 1920s through the Highway Division of the Maryland Geological Survey and its successor, the State Roads Commission—generally do not reference or describe girder construction. An analysis of the current statewide listing of county and municipal bridges (a listing maintained by the State Highway Administration) reveals that 48 county bridges, out of the total of 141 approximately dated to "1900" by county engineers, were listed as steel girder, steel stringer, or variants of such terms. (It should be noted that the "1900" date is often given when no exact date is pinpointed for a bridge that is clearly old). A grand total of 200 bridges (including "steel culverts"), out of 550 bridges dated on the county list between 1901 and 1930, were described as steel beam, steel girder, or steel stringer and girder varieties. The total suggests that among the various highway bridge types built in the early twentieth century metal girder bridges in Maryland between 1900 and 1930 were second in popularity only to reinforced concrete bridges. However, these numbers must be interpreted with caution, as they do not necessarily include all county and municipal bridges. When the bridge was built and/or given a major alteration, did it have a significant impact on the growth and development of the area? There is no evidence that the construction of this bridge had a significant impact on the growth and development of this area. Is the bridge located in an area which may be eligible for historic designation and would the bridge add to or detract from the historic/visual character of the potential district? The bridge is located in an area which does not appear to be eligible for historic designation. #### Is the bridge a significant example of its type? A significant example of a metal girder bridge should possess character-defining elements of its type, and be readily recognizable as an historic structure from the perspective of the traveler. The integrity of distinctive features visible from the roadway approach, including parapet walls or railings, is important in structures which are common examples of their type. In addition, the structure must be in excellent condition. This bridge no longer has its original solid panel parapets, which were replaced in 1978 with modern concrete parapets and a pedestrian barrier. Because of this, the integrity of distinctive features visible from the roadway has been significantly altered, making the structure an undistinguished example of a metal girder bridge. ### Does the bridge retain integrity of important elements described in Context Addendum? The bridge retains the character-defining elements of its type, as defined by the Statewide Historic Bridge Context, including rolled longitudinal I-beams and concrete abutments. However, the integrity of historic features visible from the road has been altered. The structure no longer retains its original solid panel parapets, which were replaced in 1978 with modern concrete parapets with pedestrian barriers Is the bridge a significant example of the work of a manufacturer, designer, and/or engineer? The bridge is not a significant example of the work of the State Roads Commission. Should the bridge be given further study before an evaluation of its significance is made? No further study of this bridge is required to evaluate its significance. | BIBLIOGRAPHY: | | |--------------------------------|-------------------------------| | County inspection/bridge files | SHA inspection/bridge files X | | | 210 | ## Other (list): Gunnarson, Robert 1990 The Story of the Northern Central Railway, From Baltimore to Lake Ontario. Greenberg Publishing Co., Sykesville, Maryland. Johnson, Arthur Newhall The Present Condition of Maryland Highways. In Report on the Highways of Maryland. Maryland Geological Survey, The Johns Hopkins University Press, Baltimore. Tyrrell, Henry G. 1911 History of Bridge Engineering. Published by author, Chicago. # **SURVEYOR:** | Date bridge recorded | 2/28/97 | | | | | |---|-----------------------------------|---|--|--|--| | Name of surveyor(| aroline Hall/Eric F. Griffitts | | | | | | Organization/Address P.A.C. Spero & Co., 40 W. Chesapeake Avenue, Baltimore, MD 21204 | | | | | | | Phone number (410) | 96-1685 FAX number (410) 296-1670 | _ | | | | 1. BA-2780 2 USI over Sulpher Spring Rd 3. Baltimore Co MD 4. Eric Gruffetts 5 3 97 6 MD SHPO 7. north approach 8.1016 1. BH 8780 2. USI over Sulpher Spring Rd 3 Balto Co MD 4. Eric Griffitts 5.3/97 6. MD SHPO 7. South affroach 8.2016 1, BA-3780 2. USI over Sulph. Spring 3. Bo (40. Co, M) 4. Enil Griffitts 5.3/97 6.MD SHPO 7 west elevation 8.346 1. BA-2780 2. US I OVER Sulphur Spring RD. 3. Baltimore county 4. Ence Diffitts 5.3/97 6. MD 5440 7. girder détael 4 north abutment 8. 4946 1. BA 2780 2. US Lover Sulphur Spring Rd 3. Baltmore County 4 Erie Greffetts 5.397 6. MD SHPD 7. sost elevation 8. 5066 1. BA- 2780 2. US Lover Sulphur Sping Ld 3. Baltimore County 4. Erie Griffitts 5 3/97 6. MD 5400 7. detail of parapet 8 6 5 4 6